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Abstract:

One of the most salient data problems empirical researchers face is
the lack of informative responses in survey data. This contribution
briefly surveys the literature on item nonresponse behavior and its de-
terminants before it describes four approaches to address item nonre-
sponse problems: Casewise deletion of observations, weighting, imputa-
tion, and model-based procedures. We describe the basic approaches,
their strengths and weaknesses and illustrate their effects using a simu-
lation study. The paper concludes with recommendations for the applied
researcher.

Keywords: Item nonresponse, imputation, weighting, survey
data

JEL Code: C1, C81, C49

Correspondence to:
Regina T. Riphahn
WWZ Univ. of Basel
Postfach 517
CH - 4003 Basel, Switzerland
E-Mail: regina.riphahn@unibas.ch
Tel: 0041 - 61 - 267 3367
Fax: 0041 - 61 - 267 3351

1 Introduction

Survey data can be imperfect in various ways. Sampling and noncoverage, unit non-
response, interviewer error as well as the impact of survey design and administration
can affect data quality. For the applied researcher item nonresponse, i.e. missing val-
ues among respondents’ answers present a regular challenge. This problem receives
increasing attention in the literature, where problems of statistical analysis with
missing data have been discussed since the early 1970s (e.g. Hartley and Hocking
(1971), Rubin (1972, 1974), Little (1976), Kalton (1983), and Griliches (1986)).

Even though there exist numerous alternative approaches, most statistical software
packages ”solve” the problem of item nonresponse by deleting all observations with
incomplete data. This so-called ’complete case analysis’ does not only neglect avail-
able information but may also yield biased estimates. In their eminent textbook
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Little and Rubin (1987, 2002) categorize the approaches to deal with missing data
in four main groups. Besides complete case analysis there are weighting, imputation,
and model-based procedures. Weighting approaches are typically applied to correct
for unit nonresponse, i.e. the complete refusal of single respondents to provide infor-
mation, which may lead to biased estimates as well. The basic idea is to increase the
weight of respondents in some subsamples (e.g. among providers of complete data)
in order to compensate for missing responses from respondents in other subsamples
(e.g. incomplete data providers). Weighting procedures can consider population or
sampling weights to align the observable sample with the relevant population.

In contrast, imputation techniques insert values for missing responses and gener-
ate an artificially completed dataset. A large number of alternative procedures are
applied to choose the values by which missing values are replaced: hot deck im-
putations use values from other observations in the sample, mean imputation fills
missing variables using the mean of appropriate sub-samples, and regression im-
putation generates predicted values from regression models. Besides these single
imputation methods, multiple imputation procedures impute more than one value
for each missing value, in order to assess the uncertainty of missingness and impu-
tation.

Finally, model-based procedures rely on a specified model of the observed data. In-
ference is based on the likelihood or - in the Bayesian framework - on the posterior
distribution under that model. In general, predictions of the missing data are gen-
erated based on the respondents’ observed characteristics by taking advantage of
correlation patterns measured for respondents without missing values. These value
substitutions can occur at different levels of complexity. Little and Rubin (2002)
distinguish missing values with monotone and non-monotone patterns and discuss
likelihood-based procedures derived from statistical models for the data generating
and missing data mechanism.

An evaluation of the properties of the four approaches to solve the missing data
problem hinges on the assumptions regarding the nature of the missing values. The
crucial role of this missing data mechanism was largely ignored until its concept
was formalized by Rubin (1976). Modern statistical literature (see Little and Rubin
2002, p. 12) now distinguishes three cases: missing completely at random (MCAR),
missing at random (MAR), and not missing at random (NMAR).

MCAR refers to data where the missing mechanism is unrelated to the survey vari-
ables, missing or observed. If, for instance, the probability that income is reported is
the same for all individuals, regardless of, e.g., their age or income itself, then the in-
come data are said to be MCAR. Data are labeled MAR, if the missing mechanism
is dependent on observed but not on unobserved variables. For example, special
socio-economic groups or minorities are often disproportionately subject to missing
values. If in such cases the missingness can be explained by the observed variables,
the missing data are said to be MAR. Finally, data are termed NMAR, if the miss-
ingness depends on the values of the variables that are actually not observed. This
might be the case for income reporting, where individuals with higher incomes tend
to be less likely to respond.

The next section describes the prevalence, determinants, and effects of item non-
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response using the German Socioeconomic Panel Survey (GSOEP) as an example.
Section three discusses the strengths and weaknesses of the alternative approaches
to solve the item nonresponse problem. The paper concludes with recommendations
for applied researchers.

2 Item Nonresponse in the German Socioeconomic

Panel (GSOEP)

2.1 Prevalence of Item Nonresponse in the GSOEP

The German Socioeconomic Panel is a household panel survey covering a broad
range of issues. Its questionnaire has been administered annually since 1984. It
now covers over 20,000 individual respondents. The extent of item nonresponse
in the GSOEP varies considerably across items. Averaging across the available 19
annual panel waves (1984-2002) over all subsamples we obtain 0.4 percent item non-
response for a subjective measure of health satisfaction, 0.5 percent for political
party preference, 8.9 percent for gross monthly labor earnings, and 1.3 percent for
the question on whether an individual has disability status.1

Riphahn and Serfling (2002, 2005) compared the item nonresponse rates across fi-
nancial variables in the GSOEP cross-section of 1988. At the individual level item
nonresponse rates varied between 2.6 percent e.g. for retirement benefits and 15.3
percent for income from self-employment. Among variables measured at the house-
hold level they observe more than 30 percent item nonresponse for questions about
interest payments received and annuity payments made. In contrast, certain ques-
tions on social transfers such as child or welfare benefits received yielded nonresponse
rates of below one percent.

Schräpler (2004, 2003) describes the development of item nonresponse behavior with
respect to individual gross labor income. He compares the nonresponse rates of a
given sample of respondents over the years and finds declining nonresponse rates
which differ depending on the method of data collection and respondent character-
istics. The item nonresponse behavior correlates with individual time in sample.
Other studies confirm that individuals with a low propensity to continue responding
to a panel survey are also less likely to disclose their income.

Since item nonresponse rates on financial questions are particularly high and because
income measures are relevant for many empirical studies in the social sciences, the
income variable is typically in the focus of research on determinants and effects of
item nonresponse behavior.

2.2 Determinants and Effects of Item Nonresponse

The theoretical literature on item nonresponse behavior mainly applies two explana-
tory approaches, the cognitive and the rational choice model (see e.g. Schräpler 2004

1We thank Oliver Serfling for generating these figures.
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for a discussion). Extending theoretical approaches from cognitive psychology to the
interview situation, the cognitive model conceptualizes individual response behavior
as a multi-stage process (Sudman et al. 1996): after hearing a question it must be
interpreted and the issue must be understood. Next, the respondent gathers the
relevant information, a stage which is affected by the complexity of the question.
Finally, the information is translated to the answer format required by the question-
naire and possibly adjusted based on objectives such as self representation or social
desirability.

In contrast, rational choice theory focuses only on this last stage, when respondents
evaluate behavioral alternatives based on their expected costs and benefits (Esser
1984). Schräpler (2003) provides a list of potential costs and benefits of survey
participation. Benefits of responding consist of supporting a potentially appreciated
cause, and of avoiding the negative effects of refusal such as breaking social norms
generated by the interview situation or violating courtesy towards the interviewer.
Key costs of answering a survey consist of the potential negative consequence of
providing private information (e.g. from tax authorities or through data abuse and
breach of privacy) as well as of the necessary effort to recall the facts desired by the
questionnaire.

The hypotheses that can be derived from these theories regarding the determinants
of item nonresponse behavior relate to the nature of the question (i.e. cognitive com-
plexity and sensitivity), to the relationship between respondent and interviewer, to
the interview situation, and finally to the characteristics of the respondent. Similarly,
Dillman et al. (2002) provide a classification of seven causes of item nonresponse
(INR):

• Survey Mode: INR is higher in self-administered questionnaires than in face
to face interviews.

• Interviewers: if the interviewer is able to develop a high level of rapport with
the respondents, even difficult answers may be given willingly. Also, inter-
viewers’ response to unanswered questions will affect nonresponse outcomes.

• Question Topic and Structure: certain contents such as finances, drug use,
criminal and sexual behavior are notorious for INR. Also, open-ended or
multiple-part questions, as well as those with complex branching structures
produce more INR.

• Question Difficulty: cognitive difficulty of questions or coverage of long time
horizons generate more INR.

• Institutional Policies: sensitive information e.g., sales or investment in busi-
ness surveys have high INR rates. Offering a don’t know answer option also
increases INR.

• Respondents Attributes: in many surveys older and less educated people are
less likely to respond.

Schräpler (2004), Frick and Grabka (2003) and Riphahn and Serfling (2005) esti-
mated multivariate models of item nonresponse behavior controlling for relevant
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indicators. The studies differ in their empirical approach, the subsample taken from
the GSOEP, the number of items considered, and in the key issues addressed.

Nevertheless some general findings can be summarized as follows: (i) there is signif-
icant heterogeneity in the processes determining item nonresponse behavior across
items; (ii) the association between interviewer and respondent characteristics does
not appear to be influential for item nonresponse behavior; (iii) item nonresponse
rates are higher when the interviewer is female and when a new interviewer is as-
signed to respondents; (iv) item nonresponse on income is higher at low and high
income levels; (v) face-to-face interviews yield lower nonresponse rates than self-
reporting or computer assisted interviewing; (vi) item nonresponse and ”don’t know”
answers are determined by different mechanisms and should therefore not be treated
identically.

As item nonresponse behavior appears to affect financial variables most severely,
analyses of income and wealth issues may be most subject to biases deriving from
missing data. This has been investigated for the German Socioeconomic Panel by
Biewen (2001) and Frick and Grabka (2005). Biewen used the 1997 cross-section of
the GSOEP and looked at whether three alternative methods of imputing missing
income values differentially affect inequality measures for the earnings distribution.
His results confirm that nonresponse behavior is only weakly correlated with observ-
able characteristics and that particularly very low and very high income earners fail
to report their earnings. Overall missing data and alternative imputation methods
did not appear to affect the considered inequality measures here.

Frick and Grabka (2005) look at data from the 2000 and 2001 GSOEP waves and
contrary to Biewen (2001) show clear effects of case-wise deletion on measures of
income inequality and income mobility. Apparently item nonresponse effects can
vary depending on whether gross monthly earnings are considered, as in Biewen’s
analysis, or whether equivalent post-government household incomes are investigated
as in Frick and Grabka (2005). Given that item nonresponse may indeed bias the
results of empirical analyses, correction methods need to be considered.

3 Dealing with Item Nonresponse

This section discusses four frequently applied methods for the analysis of data with
missing values due to item nonresponse:2

• Complete case (CC) analysis considers only observations with completely recorded
values for the variables of interest.

• Weighted complete case analysis in addition applies weights to compensate
for bias due to missing information. This is a standard treatment for unit-
nonresponse in surveys.

• Imputation entails single imputation such as hot-deck-methods and or multiple
imputation (MI) as proposed by Rubin (1978, 1987).

2For a discussion of procedures to avoid item nonresponse in advance, such as interviewer
training, questionnaire structure, or administration, see e.g. Groves et al. (2002).
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• Model-based corrections procedures such as the expectation-maximization (EM)
algorithm explicitly model both missingness and survey variables.

3.1 Complete Case Analysis

Software packages often handle incomplete data by deleting all cases with at least
one missing item (listwise deletion or complete case analysis (CC)). This practice
is inefficient and often leads to substantially biased inferences. Especially in mul-
tivariate analysis, listwise deletion can reduce the available data considerably, so
that they are no longer representative of the population of interest. In a dataset of
20 variables with a random five percent missing values for each variable, complete
case analysis using all 20 variables will lead to an average loss of 64 percent of the
sample.

Thus CC analysis can be wasteful, as informative data are dicarded when they
belong to records that have missing values on other variables. As an alternative for
univariate analyses often all values that are observed for a variable of interest are
used independent of missing values on other variables (available case analysis, AC).

A major disadvantage of AC analysis is that different analyses from a given dataset
will automatically be performed on different samples, depending on the missing data
pattern, i.e. which observations have complete data for each analysis. This can lead
to inconsistent estimates especially when comparisons are made using estimates
from different subsamples. In general, basing inferences only on the complete cases
implies the tacit assumption that the missing data are missing completely at random
(MCAR), which is typically not the case. The size of the resulting bias depends on
the degree of violation of the MCAR assumption, the share of missing data, and the
specifics of the analysis.

3.2 Weighting

The most common procedure to correct for nonresponse in official statistics and
survey research is weighting. Weighting is typically applied to correct for problems
of unit nonresponse but also for different selection probabilities. In combination with
complete case analysis procedures it can also be used to address item nonresponse
problems, e.g. when using Horvitz-Thompson type estimators, see Little and Rubin
(2002). A standard approach is to form adjustment cells based on background
variables measured for respondents and nonrespondents. The nonresponse weight
for individuals in an adjustment cell is then the inverse of the response rate in that
cell.

For illustration, let the sample be divided into J homogeneous cells or groups with
respect to the assumed response generating process. Let Nj denote the expected or
planned sample size in group or cell j, j = 1, 2, . . . , J , e.g., among young working
women, and nj the number of respondents in this group. In general, the individual
weight wi of an observation i within a cell j is computed as ratio of the number
of observations within a cell nj multiplied by design weights dj and the reciprocal
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sampling fraction (N/n) to the population total of that cell (Nj):

wi =
njdjN/n

Nj

(1)

If only sample counts are used in the weighting procedure, weighting can be in-
terpreted as a single conditional mean imputation. To illustrate this, consider the
so-called weighting-class estimator (Oh and Scheuren 1983) which is given by

Ŷ =
N

n

J∑

j=1

Nj

nj

nj∑

i=1

yij =
N

n

J∑

j=1

Njy
obs
j =

N

n

J∑

j=1

(
nj∑

i=1

yij + (Nj − nj)y
obs
j

)
. (2)

This weighting-class estimator is identical to the estimate derived by single condi-
tional mean imputation. Thus, naive estimates of standard errors and confidence
intervals will be biased downwards as it is typically the case with single imputation.
The derivation of an unbiased variance estimator is cumbersome.3

In practice, the population totals of the cells are often unknown, but the marginals
of different weighting variables are known for the population. In this situation, a set
of weighting vectors can be estimated, which satisfies the constraints given by the
population margins: This procedure is termed raking. In most cases, an iterated
proportional fitting algorithm (IPF) is applied.

While weighting methods are often relatively easy to implement, they face three
major disadvantages: (i) especially in the presence of outliers weighted estimates
can have high variances, (ii) variance estimation for weighted estimates can be cum-
bersome (see Oh and Scheuren 1983), and (iii) weighting methods typically do not
model the joint distribution of the data as is done by multiple imputation or model-
based approaches.

3.3 Imputation Techniques

Imputation techniques fill in one or more plausible values for each missing datum
so that one or more completed datasets are created (i.e. single vs. multiple impu-
tation). Often it is easier to first impute missing values and to then use standard
complete-data methods of analysis than to develop statistical techniques that al-
low the analysis of incomplete data directly. Imputation allows to incorporate the
data collector’s knowledge and to use additional information not available to the
analyst. Imputation of survey data and analysis of imputed data can be performed
separately, which is an appealing feature. The application of standard methods on
data with singly imputed values will result in underestimated standard errors, if
the uncertainty of the imputation procedure is ignored. While point estimates may
be unbiased, confidence intervals will be too narrow, and p-values too low. Due
to its operational convenience, single imputation has long been used, especially by
statistical offices. Among the key challenges for single imputation is to preserve the
covariance structures in the data and at the same time to appropriately reflect the

3Notice that often additional information is available and instead of weighting a multiple im-
putation procedure (see section 3.5) can be applied successfully, see Rässler and Schnell (2004).
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uncertainty due to the imputation process. Usually this means that for every point
estimate based on singly imputed data its frequency valid variance estimate has to
be derived separately; such approaches are discussed, e.g., by Lee et al. (2002).

Multiple imputation (MI), introduced by Rubin (1978) and discussed in detail in
Rubin (1987), retains the advantages of imputation while allowing the data analyst
to make valid assessments of uncertainty. Multiple imputation reflects uncertainty
in the imputation of the missing values through wider confidence intervals and larger
p-values than under single imputation. MI is a Monte Carlo technique that replaces
the missing values by m > 1 simulated versions, generated according to a probability
distribution which indicates how likely the true values are given the observed data.
Typically m is small, e.g., m = 5, although with increasing computational power
m can be 10 or 20. In general, this depends on the amount of missingness and
on the distribution of the parameters to be estimated. Each of the imputed (and
thus completed) datasets is first analyzed by standard methods; the results are then
combined to produce estimates and confidence intervals that reflect the missing data
uncertainty.

To illustrate this, let Yobs denote the observed components of any uni- or multivari-
ate variable Y , and Ymis its missing components. Then, m values are imputed for
each missing datum according to some distributional assumptions creating m > 1
independent simulated imputations (Yobs, Y

(1)
mis), (Yobs, Y

(2)
mis), . . . , (Yobs, Y

(m)
mis ). Stan-

dard complete-case analysis can be performed for each of the m imputed datasets,
enabling us to calculate the imputed data estimate θ̂(t) = θ̂(Yobs, Y

(t)
mis) along with its

estimated variance v̂ar(θ̂(t)) = v̂ar(θ̂(Yobs, Y
(t)
mis)), t = 1, 2, . . . ,m. The complete-case

estimates are combined according to the MI paradigm that the MI point estimate
for θ is simply the average

θ̂MI =
1

m

m∑

t=1

θ̂(t). (3)

To obtain a standard error

√
v̂ar(θ̂MI) for the MI estimate θ̂MI , we first calculate

the “between-imputation” variance

v̂ar(θ̂)between = B =
1

m − 1

m∑

t=1

(θ̂(t) − θ̂MI)
2, (4)

and then the “within-imputation” variance

v̂ar(θ̂)within = W =
1

m

m∑

t=1

v̂ar(θ̂(t)) . (5)

Finally, the estimated total variance is defined by

v̂ar(θ̂MI) = T = v̂ar(θ̂)within + (1 +
1

m
)v̂ar(θ̂)between = W +

m + 1

m
B. (6)

For large sample sizes, tests and two-sided (1 − α)100% interval estimates can be
based on the Student’s t-distribution

(θ̂MI − θ)/
√

T ∼ tv and θ̂MI ± tv,1−α/2

√
T (7)
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with degrees of freedom

v = (m − 1)

(
1 +

W

(1 + m−1)B

)2

(8)

MI is in general applicable when the complete-data estimates are asymptotically nor-
mal (e.g. ML estimates) or t distributed (see Rubin and Schenker (1986), Barnard
and Rubin (1999), or Little and Rubin (2002)).

The theoretical motivation for multiple imputation is Bayesian, although the result-
ing multiple imputation inference is usually also valid from a frequentist viewpoint.
Basically, MI requires independent random draws from the posterior predictive dis-
tribution of the missing data given the observed data. Usually this is performed by
a two-step procedure. First, we take random draws of the parameters according to
their observed-data posterior distribution. Second, we perform random draws of the
missing data according to their conditional predictive distribution. This is done m
times. If only one variable has missing values, such a specification is rather straight-
forward and univariate (Bayesian) regression models may be applied. When the data
have a multivariate structure and different missing data patterns, the observed-data
posteriors are often not standard distributions from which random numbers can eas-
ily be generated. However, with increasing computational power simpler methods
have been developed to enable multiple imputation based on Markov Chain Monte
Carlo (MCMC) techniques. In MCMC the desired distributions are achieved as
stationary distributions of Markov chains which are based on the easier to com-
pute complete-data distributions. There is a broad variety of available models.
However, common concerns with multiple imputation address the model-based as-
sumptions and the complexity of the Bayesian posterior predictions. Clearly there
is no assumption-free imputation method. However, multiple imputation explicitly
formulates and evaluates these assumptions. A broad discussion of advantages and
disadvantages of single and multiple imputation procedures is provided in several
chapters of the book of Groves et al. (2002).

3.4 Model-based Procedures

Model-based procedures to adjust for nonresponse simultaneously model the distri-
bution of the data Y and the response mechanism R. Selection models specify this
joint distribution fY,R(y, r; θ, ξ) as

fY,R(y, r; θ, ξ) = fY (y; θ)fR|Y (r|y; ξ) (9)

and have to formulate an explicit model for the distribution of the response missing-
data mechanism fR|Y (r|y; ξ) where θ and ξ are the unknown parameters or in the
Bayesian context are random variables as well. Keeping the notation simple, with
missing data the likelihood of (9) is

L(θ, ξ; y, r) =

∫
fYobs,Ymis

(yobs, ymis; θ)fR|Yobs,Ymis
(r|yobs, ymis; ξ)dymis. (10)

Maximum-Likelihood estimates are found by maximizing this function with respect
to θ and ξ. In the Bayesian context the posterior distribution is obtained by incor-
porating a prior distribution and performing the necessary integrations.
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More often the observed-data likelihood, which is also called the likelihood ignoring
the missing data mechanism, is considered:

L(θ; yobs) =

∫
fYobs,Ymis

(yobs, ymis; θ)dymis. (11)

Inferences about θ can be based on (11) rather than on the full likelihood (10) if
the missing data mechanism is ignorable. Notice that ignorable Bayesian inference
would add a prior distribution for θ. Rubin (1976) has shown that an ignorable
missing data mechanism is given when two conditions hold. First, the parameters θ
and ξ have to be distinct, i.e., they are not functionally related or - in the Bayesian
framework - are a priori independent. Second, the missing data are MAR.

Ignorable ML methods focussing on the estimation of θ have a couple of advantages.
Usually the interest is in θ and not in the ”nuisance” parameters ξ. Then the explicit
modeling of the response mechanism can be cumbersome and easily misspecified.
Also, often information for the joint estimation of θ and ξ is very limited. To sum
up, estimates assuming MAR data turn out to be more robust in many senses, see
Little and Rubin (2002).

However, in many missing data problems, even the observed-data likelihood (11)
is a complicated function and explicit expressions for the ML estimate cannot be
derived. In such situations, the Expectation-Maximization (EM) algorithm is a
broadly applicable approach to the iterative computation of maximum likelihood
estimates. On each iteration of the EM algorithm there are two steps, called the
expectation or E-step and the maximization or M-step. Roughly speaking, the
basic idea of the EM algorithm is first (E-step) to fill in the missing data Ymis by
their conditional expectation given the observed data and an initial estimate of the
parameter θ to achieve a completed likelihood function, and second (M-step) to
recalculate the maximum likelihood (ML) estimate of θ given the observed values
yobs and the filled-in values of Ymis = ymis. Then the E-step and M-step are iterated
until convergence of the estimates is achieved.

More precisely, it is the log likelihood ln L(θ; y) of the complete-data problem that is
manipulated in the E-step. As it is based partly on unobserved data, it is replaced
by its conditional expectation

E(ln L(θ; Y )|yobs; θ
(t))

given the observed data yobs and a current fit θ(t) for the unknown parameters. Thus
the E-step consists of calculating this conditional expectation E(ln L(θ; Y )|yobs; θ

(t)).
The simpler M-step computation can now be applied to this completed data and a
new actual value θ(t+1) for the ML estimate is computed therefrom. Now let θ(t+1)

be the value of θ that maximizes E(ln L(θ; Y )|yobs; θ
(t)). Dempster et al. (1977)

have shown that θ(t+1) then also maximizes the observed-data likelihood L(θ; yobs)
in the sense that the observed-data likelihood of θ(t+1) is at least as high as that of
θ(t), i.e. L(θ(t+1); yobs) ≥ L(θ(t); yobs).

Starting from some suitable initial parameter values θ(0), the E- and the M-steps
are repeated until convergence, for instance, until |θ(t+1) − θ(t)| ≤ ε holds for some
fixed ε > 0. Not all the problems are well-behaved, however, and sometimes the
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EM does not converge to a unique global maximum. For a detailed description of
the EM algorithm and its properties the interested reader is referred to McLachlan
and Krishnan (1997), Schafer (1997), Little and Rubin (2002), and the fundamental
paper of Dempster et al. (1977).

3.5 Evidence from Comparison Studies

In this section we present a simple simulation study to illustrate the implications
of alternative imputation procedures. We compare moments of a random variable
(income) when applying different procedures to deal with its missing values: mul-
tiple imputation (MI), simple single mean imputation (SI), single mean imputation
within classes (also known as conditional mean imputation and here equivalent to a
weighting procedure as shown in section 3.2) (SI CM), and complete complete case
analysis (CC).

Assume that age (AGE) is normally distributed with mean 40 and standard devi-
ation 10, and income (INC) is normally distributed with mean 1500 and standard
deviation 300. Moreover, let the correlation between age and income be 0.8. So we
let

(AGE, INC) ∼ N

((
40

1500

))
,

((
102 0.8 · 3000

0.8 · 3000 3002

))

A sample of n = 2000 is drawn from this universe. After being generated, the AGE
variable is recoded into 6 categories, 1 <= 20 years, 2 = 20 - 30 years, ..., 6 >
60 years. First, the complete cases are analyzed, the mean income estimate, its
standard error (s.e.), and the 95% confidence interval are calculated. Then different
missingness mechanisms (MCAR, MAR, NMAR) are applied on income. Under
MAR, income is missing with higher probability when age is higher, under NMAR,
the probability that income is missing is higher the higher income is itself.

After discarding 30% of the income data, first the complete cases are analyzed, then
a simple mean imputation is performed, and, finally, a proper multiple imputation
procedure is applied according to Rubin (1987, p.167). The whole simulation process
of creating the data, applying the missingness, performing the imputations, and
analyzing the sample is repeated 1000 times. The coverage (cvg.) is counted, i.e.,
the number of confidence intervals out of 1000 that cover the true mean value. The
average width of the 95% confidence interval is reported and the usual correlation
estimate between age (recoded) and income is given.

The results in Table 1 show how precision is reduced when only the complete cases
are used under MCAR, and how biased the complete case estimate (CC) gets when
the missingness is MAR or NMAR.4 The table also shows how biased a simple
mean imputation is and how this bias is corrected when conditional means are
imputed instead of the overall mean (cf. the means in rows 7 and 8 and 11 and 12).
However, this conditional mean imputation requires that the missingness depends
on the variable conditioned on. The single mean imputation within classes also
leads to an overestimation of the correlation between recoded AGE and INC though

4For the precision compare the standard errors in row 1 to those of the CC analyses in rows 2,
6, and 10. For bias compare the means in rows 2, 6 and 10.
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the simple single imputation underestimates it (see the last column of Table 1).
Moreover, with single imputation the standard errors are always too small to get
the nominal coverage.

Even if the missingness is MCAR, a simple mean imputation affects standard errors
and correlations. Under MAR and even under NMAR, multiple imputation yields
results much closer to the true values. Particularly in a NMAR scenario MI borrows
strength from the correlation between age and income. Standard errors, correlation
and the nominal coverage are well reproduced by MI. Notice that confidence intervals
under MI can be even narrower than confidence intervals based on complete case
analysis (CC). This is especially true if the imputed sample is substantially larger
than the complete case sample. Therefore, typically, the following comparisons hold
for most surveys and most estimates of standard errors:

s.e.(SI) < s.e.(truth) < s.e.(MI) < s.e.(CC).

No Missing Proc. Cvg. Mean(INC) S.e. (INC) CIwidth Cor(AGE, INC)

1 None 0.96 1500.21 6.71 26.3 0.77
2 MCAR CC 0.95 1500.14 8.01 31.44 0.77
3 MCAR SI 0.82 1500.14 5.61 22.01 0.64
4 MCAR SI CM 0.91 1500.20 6.28 24.63 0.82
5 MCAR MI 0.95 1500.24 7.34 29.10 0.77

6 MAR CC 0.04 1470.35 7.98 31.31 0.77
7 MAR SI 0.01 1470.35 5.58 21.90 0.63
8 MAR SI CM 0.88 1499.90 6.28 24.65 0.82
9 MAR MI 0.93 1499.82 7.43 29.50 0.77

10 NMAR CC 0.11 1474.29 7.99 31.34 0.77
11 NMAR SI 0.03 1474.29 5.59 21.91 0.64
12 NMAR SI CM 0.59 1489.33 6.26 24.56 0.82
13 NMAR MI 0.71 1489.30 7.36 29.20 0.77

Table 1: Results of the simulation study

4 Conclusions and Recommendations

Item nonresponse is a common problem in empirical analyses. This is confirmed
by the substantial incidence with which respondents refuse to provide information
e.g. on financial variables. Research on the determinants of nonresponse behavior
yields a catalogue of relevant factors. The evidence on German data confirms that
data collection methods and respondent characteristics affect nonresponse behavior.
Extant studies also confirm that different ways of dealing with item nonresponse
may affect the results of empirical analyses.

We discuss the strengths and weaknesses of four commonly used approaches to deal
with item nonresponse and provide an own simulation study. This simulation yields
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that the most commonly used approach, which considers only observations without
missing values, can lead to substantial biases in the estimates. The performance of
single imputation procedures depends on whether there are patterns in the miss-
ingness of the data or whether the information is missing completely at random.
Multiple imputation procedures appear to yield the best coverage of the true value
by the estimated confidence intervals and the best reflection of existing correlation
patterns in the data.

Casewise deletion can only be an appropriate procedure if the missing data are
missing completely at random. In all other cases it involves biased estimates and
other procedures are preferable. Weighting is a first step to correct for nonresponse
and disproportionalities. The literature suggests that multiple imputation under
MAR often is quite robust against violations of the MAR assumption. Only when
NMAR is a serious concern and the share of missing information is substantial it
seems necessary to jointly model the data and the missingness using model-based
procedures. Since missing values cannot be observed, there is no direct evidence
in the data to test a MAR assumption. Therefore, it seems useful to consider
alternative models and to explore the sensitivity of resulting inferences. We conclude
that a multiple imputation procedure seems to be the best alternative at hand to
account for missingness and to exploit all available information. In particular it
generates the only format with correct standard errors allowing valid inference from
standard complete case analysis.

It is recommendable that empirical researchers step beyond standard complete or
available case analysis and investigate the robustness of findings by applying alterna-
tive procedures. This is aided by the fact that various single imputation techniques,
such as mean imputation, conditional mean imputation, or regression imputation,
are now available in commercial statistical software packages. With increasing com-
putational power, more and more multiple imputation techniques are also being
implemented in available statistics software to create multiply-imputed datasets for
further analyses.5
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